4-1. 一般生成函數

Define Generating Function

a0 a_0 , a1 a_1 , a2 a_2 , ... 為一實數數列,定義 A A (x x ) = a0 a_0 + a1x a_1 x + a2x2 a_2 x^2 + ... = i=0aixi \displaystyle\sum_{i=0}^{\infty} a_i x^i 為該數列的生成函數(generating function, GF)

生成函數: 表達數列的方法

Formula of Generating Function

  • (1 1 + x x )n ^n = (n0) \dbinom{n}{0} + (n1)x \dbinom{n}{1} x + (n2)x2 \dbinom{n}{2} x^2 + ... + (nn)xn \dbinom{n}{n} x^n = i=0n(ni)xi \displaystyle\sum_{i=0}^n \dbinom{n}{i} x^i
  • 11x \dfrac{1}{1 - x} = 1 1 + x x + x2 x^2 + ... = i=0xi \displaystyle\sum_{i=0}^{\infty} x^i
  • 1xn+11x \dfrac{1 - x^{n + 1}}{1 - x} = 1 1 + x x + x2 x^2 + ... + xn x^n = i=0nxi \displaystyle\sum_{i=0}^{n} x^i

Extended Binomial Coefficient

nR n \in R rN r \in N ,定義 (nr) \dbinom{n}{r} = n(n1)...(nr+1)r! \dfrac{ n(n - 1)...(n - r + 1)}{r!} ,稱為廣義二項式係數(extended binomial coefficient)

  • (nr) \dbinom{-n}{r} = (1 -1 )r(n+r1r) ^r \dbinom{n + r - 1}{r}
  • (1 1 + x x )n ^{-n} = r=0(nr)xr \displaystyle\sum_{r=0}^{\infty} \dbinom{-n}{r} x^r = r=0 \displaystyle\sum_{r=0}^{\infty} (1 -1 )r(n+r1r)xr ^r \dbinom{n + r - 1}{r} x^r
    \Rightarrow (1 1 - x x )n ^{-n} = r=0 \displaystyle\sum_{r=0}^{\infty} (1 -1 )r(n+r1r) ^r \dbinom{n + r - 1}{r} (x -x )r^r = r=0(n+r1r)xr \displaystyle\sum_{r=0}^{\infty} \dbinom{n + r - 1}{r} x^r

    (1±x 1 \pm x )n ^{-n} = 1(1±x)n\dfrac{1}{(1 \pm x)^n} = (11±x \dfrac{1}{1 \pm x} )n ^n

Copyright© saberLiou all rights reserved.            last updated at 2019-10-10 16:54:11

results matching ""

    No results matching ""