4-1. 一般生成函數
Define Generating Function
a0, a1, a2, ... 為一實數數列,定義 A(x) = a0 + a1x + a2x2 + ... = i=0∑∞aixi 為該數列的生成函數(generating function, GF)
生成函數: 表達數列的方法
- (1 + x)n = (0n) + (1n)x + (2n)x2 + ... + (nn)xn = i=0∑n(in)xi
- 1−x1 = 1 + x + x2 + ... = i=0∑∞xi
- 1−x1−xn+1 = 1 + x + x2 + ... + xn = i=0∑nxi
Extended Binomial Coefficient
n∈R,r∈N,定義 (rn) = r!n(n−1)...(n−r+1),稱為廣義二項式係數(extended binomial coefficient)
- (r−n) = (−1)r(rn+r−1)
- (1 + x)−n = r=0∑∞(r−n)xr = r=0∑∞(−1)r(rn+r−1)xr
⇒ (1 - x)−n = r=0∑∞(−1)r(rn+r−1)(−x)r = r=0∑∞(rn+r−1)xr
(1±x)−n = (1±x)n1 = (1±x1)n