4-1. 線性映射

Define Linear Mapping

V V , V V' : vector spaces over F F , T T : VV V \rightarrow V' 為一 function 滿足

  • u \forall \vec{u} , vV \vec{v} \in V , T T (u \vec{u} + v \vec{v} ) = T T (u \vec{u} ) + T T (v \vec{v} )
  • cF \forall c \in F , vV \forall \vec{v} \in V , T T (cv c \vec{v} ) = cT c T (v \vec{v} )

則稱 T T V V V V' 之一線性轉換(linear transformation)線性映射(linear mapping),或簡稱 T T 線性(linear)

Properties of Linear Mapping

  • T T : VV V \rightarrow V linear, 稱 T T 為一線性算子(linear operator)
  • T T : VF V \rightarrow F linear, 稱 T T 為一線性泛涵(linear functional)

    ex. ^{ex.} trace of matrix is a linear functional.

  • IV I_V : VV V \rightarrow V , IV I_V (v \vec{v} ) = v \vec{v} , vV \forall \vec{v} \in V , 稱為 V V 上的單位映射函數(identity mapping)
  • T0 T_0 : VV V \rightarrow V' , T0 T_0 (v \vec{v} ) = 0 \vec{0} , vV \forall \vec{v} \in V , 稱為零映射函數(zero mapping), 記作 O O

線性映射的充要條件

T T : VV V \rightarrow V' linear c \Leftrightarrow \forall c , dF d \in F , u \forall \vec{u} , vV \vec{v} \in V , T T (cu c \vec{u} + dv d \vec{v} ) = T T (cu c \vec{u} ) + T T (dv d \vec{v} )

線性映射的必要條件

T T : VV V \rightarrow V' linear \Rightarrow

  1. T T (0 \vec{0} ) = 0 \vec{0}

    by T T (cv c \vec{v} ) = cT c T (v \vec{v} ), c c = 0 0

  2. T T (v - \vec{v} ) = T - T (v \vec{v} )

    by T T (cv c \vec{v} ) = cT c T (v \vec{v} ), c c = 1 - 1

  3. u \forall \vec{u} , vV \vec{v} \in V , T T (u \vec{u} - v \vec{v} ) = T T (u \vec{u} ) - T T (v \vec{v} )

Theorem of Basis with Linear Mapping

V V , V V' : vector spaces over F F , β \beta = { v1 \vec{v_1} , ..., vn \vec{v_n} } 為 V V 之一 basis, w1 \vec{w_1} , ..., wnV \vec{w_n} \in V' , 則 \exists 唯一 T T : VV V \rightarrow V' linear s.t. T T (v1 \vec{v_1} ) = w1 \vec{w_1} , ..., T T (vn \vec{v_n} ) = wn \vec{w_n}

當一個線性映射對某一組基底的對應決定後,則整個線性映射便唯一決定

Theorem of Matrix Transformation

T T : FnFm F^n \rightarrow F^m linear, 則 \exists 唯一 AFm×n A \in F^{m \times n} s.t. T T (x \vec{x} ) = Ax A \vec{x} , xFn \forall \vec{x} \in F^n , 其中 A A = [ T T (e1 \vec{e_1} ) T T (e1 \vec{e_1} ) ... T T (en \vec{e_n} ) ] 又可稱為 T T 標準矩陣(standard matrix)

Copyright© saberLiou all rights reserved.            last updated at 2019-09-23 23:46:58

results matching ""

    No results matching ""