4-1. 線性映射
Define Linear Mapping
V, V′: vector spaces over F, T: V→V′ 為一 function 滿足
- ∀u⃗, v⃗∈V, T(u⃗ + v⃗) = T(u⃗) + T(v⃗)
- ∀c∈F, ∀v⃗∈V, T(cv⃗) = cT(v⃗)
則稱 T 為 V 至 V′ 之一線性轉換(linear transformation)或線性映射(linear mapping),或簡稱 T 為線性(linear)
Properties of Linear Mapping
- T: V→V linear, 稱 T 為一線性算子(linear operator)
- T: V→F linear, 稱 T 為一線性泛涵(linear functional)
ex. trace of matrix is a linear functional.
- IV: V→V, IV(v⃗) = v⃗, ∀v⃗∈V, 稱為 V 上的單位映射函數(identity mapping)
- T0: V→V′, T0(v⃗) = 0⃗, ∀v⃗∈V, 稱為零映射函數(zero mapping), 記作 O
線性映射的充要條件
T: V→V′ linear ⇔∀c, d∈F, ∀u⃗, v⃗∈V, T(cu⃗ + dv⃗) = T(cu⃗) + T(dv⃗)
線性映射的必要條件
T: V→V′ linear ⇒
- T(0⃗) = 0⃗
by T(cv⃗) = cT(v⃗), c = 0
- T(−v⃗) = −T(v⃗)
by T(cv⃗) = cT(v⃗), c = −1
- ∀u⃗, v⃗∈V, T(u⃗ - v⃗) = T(u⃗) - T(v⃗)
Theorem of Basis with Linear Mapping
V, V′: vector spaces over F, β = { v1⃗, ..., vn⃗ } 為 V 之一 basis, w1⃗, ..., wn⃗∈V′, 則 ∃ 唯一 T: V→V′ linear s.t. T(v1⃗) = w1⃗, ..., T(vn⃗) = wn⃗
當一個線性映射對某一組基底的對應決定後,則整個線性映射便唯一決定
若 T: Fn→Fm linear, 則 ∃ 唯一 A∈Fm×n s.t. T(x⃗) = Ax⃗, ∀x⃗∈Fn, 其中 A = [ T(e1⃗) T(e1⃗) ... T(en⃗) ] 又可稱為 T 之標準矩陣(standard matrix)