3-4. 基底與維度

Define Basis and Dimension

V V : vector space over F F , SV S \subseteq V , 滿足

  • S S 生成 V V : span span (S S ) = V V

    目的,保證存在性

  • S S LI

    手段,保證唯一性

則稱 S S V V 之一組基底(basis),且稱 S S 的向量個數為 V V 維度(dimension),記作 dim(V V )

The basis of a vector space is a set of linearly independent vectors that span the full space.

  • 基底個數未必唯一,但維度必唯一

Standard Basis of Each Vector Spaces

  • V V = Fn F^n , β \beta = { e1 \vec{e_1} = (1 1 , 0 0 , ..., 0 0 ), e2 \vec{e_2} = (0 0 , 1 1 , ..., 0 0 ), ..., en \vec{e_n} = (0 0 , 0 0 , ..., 1 1 ) } \Rightarrow dim(Fn F^n ) = n n
  • V V = Fm×n F^{m \times n} , β \beta = { Eij E_{ij} | 1im 1 \le i \le m , 1jn 1 \le j \le n } \Rightarrow dim(Fm×n F^{m \times n} ) = mn mn
  • V V = P P , β \beta = { 1 1 , x x , x2 x^2 , ... } \Rightarrow dim(P P ) = \infty

    無限維向量空間(infinite-dimensional vector space)

  • V V = Pn P^n , β \beta = { 1 1 , x x , x2 x^2 , ..., xn x^n } \Rightarrow dim(Pn P^n ) = n n + 1 1
  • V V = F F , β \beta = { 1 1 } \Rightarrow dim(F F ) = 1 1
  • V V = { 0 \vec{0} }, β \beta = \emptyset \Rightarrow dim({ 0 \vec{0} }) = 0 0

    唯一一個維度零的向量空間

Theorem of Basis

V V : vector space over F F , β \beta = { v1 \vec{v_1} , v2 \vec{v_2} , ..., vn \vec{v_n} } 為 V V 之一組 basis vV \Leftrightarrow \forall \vec{v} \in V , v \vec{v} 唯一寫成 β \beta 中向量之 LC

生成裁減定理

V V : vector space over F F , S S 生成 V V , 若 S S 不為 LI, 則 uS \exists \vec{u} \in S s.t. S S - { u \vec{u} } 仍生成 V V

獨立擴增定理

V V : vector space over F F , S S LI, 若 S S 不生成 V V , 則 uspan \exists \vec{u} \notin span (S S ) (or S \notin S ) s.t. S S \cup { u \vec{u} } 仍為 LI

Properties of Basis and Dimension with Span and LI

  • S S 生成 V V S S' LI SS \Rightarrow |S'| \le |S|
  • 基底最小生成集(minimal spanning set)最大獨立集(maximal linearly independent set)
  • dim(V V ) = n n ,
    • S S 生成 VSn V \Rightarrow |S| \ge n , S<nS |S| < n \Rightarrow S 不生成 V V

      SnS |S| \ge n \nRightarrow S 生成 V V

    • S S LI VSn V \Rightarrow |S| \le n , S>nS |S| > n \Rightarrow S LD

      SnS |S| \le n \nRightarrow S LI

  • dim(V V ) = n n = S |S| , S S 生成 V V S S LI S \Rightarrow S V V 之一組 basis
spanning sets
basis \rightarrow \text{---------------}
LI sets
Copyright© saberLiou all rights reserved.            last updated at 2019-09-23 16:57:50

results matching ""

    No results matching ""