3-2. 子空間

Define Subspace

(V V , +, \cdot ): vector space,

  • WV W \subseteq V
  • (W W , +, \cdot ): vector space

則稱 W W V V 之子空間(subspace)

Theorem of 子空間的充要條件

已知 V V : vector space, WV W \subseteq V , W W \ne \emptyset , 則下列敘述等價:

  1. W W V V 的子空間
  2. u \forall \vec{u} , vW \vec{v} \in W , u \vec{u} + vW \vec{v} \in W
  3. cF \forall c \in F , vW \forall \vec{v} \in W , cvW c\vec{v} \in W
  4. c \forall c , dF d \in F , u \forall \vec{u} , vW \vec{v} \in W , cu c\vec{u} + dvW d\vec{v} \in W

    Corollary of 2. & 3.

  5. ciF \forall c_i \in F , viW v_i \in W , i i = 1 1 , 2 2 , ..., k k , i=1kciviW \displaystyle\sum_{i=1}^k c_i v_i \in W

    Corollary of 4.

\rightarrow WV W \subseteq V W W \ne \emptyset 的條件下,只需驗證向量加法純量積封閉性即可證明 W W V V 的子空間

Square of R 的三型子空間

  1. 原點: {(0 0 , 0 0 )} = { 0 \vec{0} }: zero space \rightarrow

    \forall vector spaces, \exists { 0 \vec{0} }

  2. 過原點直線 \rightarrow

    若非直線,則不具純量積封閉性

  3. xy x-y 平面: R2 R^2 \rightarrow

    V V V V 的子空間

Theorem of 兩子空間交集

W1 W_1 , W2 W_2 are subspaces of V V , 則 W1W2 W_1 \cap W_2 is a subspace of V V

  1. \subseteq
  2. \ne \emptyset
  3. 封閉性
proof:
  1. W1V W_1 \subseteq V W2V W_2 \subseteq V , 則 W1W2V W_1 \cap W_2 \subseteq V
  2. 0W1W2 \because \vec{0} \in W_1 \cap W_2 , W1W2 \therefore W_1 \cap W_2 \ne \emptyset
  3. c \forall c , dF d \in F , u \forall \vec{u} , vW1W2 \vec{v} \in W_1 \cap W_2 ,
    u \because \vec{u} , vW1 \vec{v} \in W_1 W1 W_1 is a subspace of V V , cu \therefore c\vec{u} + dv d\vec{v} = W1 W_1
    u \because \vec{u} , vW2 \vec{v} \in W_2 W2 W_2 is a subspace of V V , cu \therefore c\vec{u} + dv d\vec{v} = W2 W_2
    cu \therefore c\vec{u} + dv d\vec{v} = W1W2 W_1 \cap W_2

兩子空間聯集

W1 W_1 , W2 W_2 are subspaces of V V , W1W2 W_1 \cap W_2 不一定V V 的 subspace

反例:

V V = R2 R^2 has two subsapces W1 W_1 and W2 W_2 ,

  • W1 W_1 = { (x x , 0 0 ) | xR x \in R },

    x x

  • W2 W_2 = { (0 0 , y y ) | yR y \in R },

    y y

but W1W2 W_1 \cup W_2 is not a subspace of V V .

ex. ^{ex.} (1 1 , 0 0 ), (0 0 , 1 1 ) W1W2 \in W_1 \cup W_2 , but (1 1 , 0 0 ) + (0 0 , 1 1 ) = (1 1 , 1 1 ) W1W2 \notin W_1 \cup W_2

Theorem of 兩子空間聯集

W1 W_1 , W2 W_2 are subspaces of V V , W1W2W1W2 W_1 \cap W_2 \Leftrightarrow W_1 \subseteq W_2 or W2W1 W_2 \subseteq W_1

Define 和空間 (Sum Space)

W1 W_1 , W2 W_2 are subspaces of V V , W1 W_1 + W2 W_2 = { w1 \vec{w_1} + w2 \vec{w_2} | w1W1 \vec{w_1} \in W_1 , w2W2 \vec{w_2} \in W_2 }, 稱為 W1 W_1 , W2 W_2 之和空間(sum space)

Theorem of 和空間為 V 的子空間

W1 W_1 , W2 W_2 are subspaces of V V , 則 W1 W_1 + W2 W_2 is a subspace of V V

proof:
  1. W1V W_1 \subseteq V W2V W_2 \subseteq V , 則 W1 W_1 + W2V W_2 \subseteq V
  2. 0 \because \vec{0} = 0 \vec{0} + 0W1 \vec{0} \in W_1 + W2 W_2 , W1 \therefore W_1 + W2 W_2 \ne \emptyset
  3. c \forall c , dF d \in F , u \forall \vec{u} , vW1 \vec{v} \in W_1 + W2 W_2 ,
    u \vec{u} = u1 \vec{u_1} + u2 \vec{u_2} , u1W1 \vec{u_1} \in W_1 , u2W2 \vec{u_2} \in W_2
    v \vec{v} = v1 \vec{v_1} + v2 \vec{v_2} , v1W1 \vec{v_1} \in W_1 , v2W2 \vec{v_2} \in W_2
    cu \Rightarrow c\vec{u} + dv d\vec{v} = c c (u1 \vec{u_1} + u2 \vec{u_2} ) + d d (v1 \vec{v_1} + v2 \vec{v_2} ) = (cu1 c\vec{u_1} + dv1 d\vec{v_1} ) + (cu2 c\vec{u_2} + dv2 d\vec{v_2} ) W1 \in W_1 + W2 W_2

Define 四個基本子空間

AFm×n A \in F^{m \times n} ,

  • 核空間(kernel of A A , nullspace, N N (A A )):
    • ker ker (A A ) = { x \vec{x} : n×1 n \times 1 | Ax A\vec{x} = 0 \vec{0} }
    • 齊次解集,收集 Ax A\vec{x} = 0 \vec{0} x \vec{x}
  • 行空間(column space):
    • CS CS (A A ) = { Ax A\vec{x} : m×1 m \times 1 | x \vec{x} : n×1 n \times 1 }
    • 收集 Ax A\vec{x} = y \vec{y} y \vec{y}
  • 左核空間(left kernel of A A , left nullspace):
    • Lker Lker (A A ) = { x \vec{x} : 1×m 1 \times m | xA \vec{x}A = 0 \vec{0} }
    • 收集 xA \vec{x}A = 0 \vec{0} x \vec{x}
  • 列空間(row space):
    • RS RS (A A ) = { xA \vec{x}A : 1×n 1 \times n | x \vec{x} : 1×m 1 \times m }
    • 收集 xA \vec{x}A = y \vec{y} y \vec{y}

ex.A=[123112][???]=[00] ^{ex.} A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} ? \\ ? \\ ? \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow ker ker (A A ) ={[aaa]aR} = \begin{Bmatrix} \begin{bmatrix} a \\ a \\ -a \end{bmatrix} | a \in R \end{Bmatrix} ;

ex.B=[120120][???]=[bb] ^{ex.} B = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} ? \\ ? \\ ? \end{bmatrix} = \begin{bmatrix} b \\ b \end{bmatrix} \Rightarrow CS CS (B B ) ={[bb]bR} = \begin{Bmatrix} \begin{bmatrix} b \\ b \end{bmatrix} | b \in R \end{Bmatrix}

Theorem of 四個基本子空間

AFm×n A \in F^{m \times n} ,

  1. ker ker (A A ) is a subspace of Fn×1 F^{n \times 1}
  2. CS CS (A A ) is a subspace of Fm×1 F^{m \times 1}

    yCS \forall \vec{y} \in CS (A A ) y \Leftrightarrow \vec{y} = Ax A\vec{x} , for some x \vec{x}

  3. Lker Lker (A A ) is a subspace of F1×m F^{1 \times m}
  4. RS RS (A A ) is a subspace of F1×n F^{1 \times n}
proof:
  1. A0 \because A \cdot \vec{0} = 0 \vec{0} , 0ker \therefore \vec{0} \in ker (A A ) ker \Rightarrow ker (A A ) \ne \emptyset
    c \forall c , dF d \in F , x1 \forall \vec{x_1} , x2ker \vec{x_2} \in ker (A A ) Ax1 \Rightarrow A\vec{x_1} = Ax2 A\vec{x_2} = 0 \vec{0}
    A \Rightarrow A (cx1 c\vec{x_1} + dx2 d\vec{x_2} ) = cAx1 cA\vec{x_1} + dAx2 dA\vec{x_2} = c0 c \cdot \vec{0} + d0 d \cdot \vec{0} = 0 \vec{0}
    cx1 \Rightarrow c\vec{x_1} + dx2ker d\vec{x_2} \in ker (A A )

    3 同理

  2. 0 \vec{0} = A0CS A \cdot \vec{0} \in CS (A A ) CS \Rightarrow CS (A A ) \ne \emptyset
    c \forall c , dF d \in F , y1 \forall \vec{y_1} , y2CS \vec{y_2} \in CS (A A ) y1 \Rightarrow \vec{y_1} = Ax1 A\vec{x_1} , y2 \vec{y_2} = Ax2 A\vec{x_2} , x1 \vec{x_1} , x2 \vec{x_2} : n×1 n \times 1
    cy1 \Rightarrow c\vec{y_1} + dy2 d\vec{y_2} = cAx1 cA\vec{x_1} + dAx2 dA\vec{x_2} = A A (cx1 c\vec{x_1} + dx2 d\vec{x_2} ) CS \in CS (A A )

    4 同理

四個基本子空間 with Invertible Matrix

  1. ker ker (B B ) ker \subseteq ker (AB AB ), 當 A A is nonsingular 時, ker ker (B B ) = ker ker (AB AB )

    ABx AB\vec{x} = 0Bx \vec{0} \rightarrow B\vec{x} = 0 \vec{0}

  2. Lker Lker (A A ) Lker \subseteq Lker (AB AB ), 當 B B is nonsingular 時, Lker Lker (A A ) = Lker Lker (AB AB )
  3. CS CS (AB AB ) CS \subseteq CS (A A ), 當 B B 為可逆時, CS CS (AB AB ) = CS CS (A A )
  4. RS RS (AB AB ) = RS RS (B B )

四個基本子空間 with Row and Column Equivalence

A A , BFm×n B \in F^{m \times n} ,

  1. A A 列等價B B , 則
    • ker ker (A A ) = ker ker (B B )
    • RS RS (A A ) = RS RS (B B )
  2. A A 行等價B B , 則
    • Lker Lker (A A ) = Lker Lker (B B )
    • CS CS (A A ) = CS CS (B B )
Copyright© saberLiou all rights reserved.            last updated at 2019-09-04 17:09:58

results matching ""

    No results matching ""